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Damped stochastic system driven by colored noise:
Analytical solution by a path integral approach
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Department of Electrical Engineering, Indian Institute of Technology, Delhi Hauz Khas, New Delhi 110 016, India

T. G. Venkatesh†
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~Received 8 April 1999!

We consider the nonlinear non-Markovian stochastic process associated with the damped nonlinear dynami-
cal system driven by Ornstein-Uhlenbeck noise. An approximate Fokker-Planck-type equation governing the
above stochastic process is derived using the path-integral approach. The stationary probability density func-
tion ~SPDF! of the above process is then computed using the matrix continued fraction method. The SPDF
compares favorably with the corresponding digital simulation results obtained by us.

PACS number~s!: 05.40.2a
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I. INTRODUCTION

Stochastic differential equations~SDE’s!, also known as
Langevin equations in physical literature, play an import
role in modeling a variety of stochastic phenomena occurr
in physics, chemistry, engineering, biology, and medic
@1–3#. In condensed-matter physics, many problems incl
ing superionic conduction@4#, soliton dynamics@3#, diffu-
sion of atoms at crystal surfaces@5#, phase-locked loop de
vices @2#, a driven Ge photoconductor@6#, nematic liquid
crystals@7#, and superfluid helium@8# can be described by
SDE’s. Dye lasers@9#, ring-laser gyroscopes@10#, and opti-
cal computing devices@11# are some of the examples in op
tical physics modeled by SDE’s. Reaction-rate theory@12#
and photochemistry@13# are two of the examples in chemis
try described by SDE’s. In engineering, one encount
SDE’s while modeling Josephson junctions@2#, electronic
oscillators@14#, and nuclear reactors@15#. The human im-
mune system@16#, genetic models@17#, neuronal modeling
@18#, the motion of organisms like cells or bacterias@19# and
transport phenomena in proteins@20# are some of the bio-
logical systems satisfactorily described by SDE’s.

We consider the SDE describing the Brownian motion
a particle of unit mass in a one-dimensional potentialU(x)
described by the Langevin equation

ẍ52g ẋ2
dU~x!

dx
1j~ t !, ~1!

where x is the position of the Brownian particle,g is the
damping coefficient, andj(t) is the noise. In Eq.~1! over-
dots represent derivatives with respect to time.
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When the noise driving a SDE is ad-correlated white
noise, i.e.,^j(t)j(s)&52Dd(t2s), where D is the noise
strength, the solution processx(t) is a Markov process. Mar-
kov processes are well described by Fokker-Planck equat
~FPEs! @2#. However, noise encountered in reality has a no
zero correlation time, and hence is called colored noise. C
ored noise is modeled quite well by the Ornstein-Uhlenbe
~OU! process, which is a Gaussian Markovian process@21#.
For this case, the two time correlation function ofj(t) is
given by ^j(t)j(s)&5(D/t)exp(2ut2su/t), where D is the
noise strength,t is the noise correlation time, and the angu
brackets represent ensemble averaging. When the noise
ing the SDE is colored, the nature of the stochastic proc
becomes non-Markovian. Standard Fokker-Planck te
niques are not applicable for non-Markovian processes.
study of nonlinear stochastic systems driven by colored no
has been undertaken by a number of investigators~for a re-
view, please see Ref.@3#!. Most of the theoretical approache
proposed so far consider the overdamped limit, and try
describe the non-Markov process using an approximate F
Such Fokker-Planck approximations arise as a result of u
functional calculus@22#, cumulant summation@23#, projec-
tion operator technique@24#, the matrix continued fraction
method,~MCF! @2,25#, and the path integral@26–29# tech-
nique. In particular, the path integral method has proven
be a good technique in the weak noise limit. The path in
gral method has yielded good results in the study of an ov
damped bistable potential driven by OU noise for importa
statistical quantities like the mean first passage time and
stationary probability density function~SPDF! @30#. For the
case of finite damping, the Langevin equation can be writ
as a three-dimensional Markovian process. An analyt
treatment of this equation is extremely difficult because of
following characteristics: ~a! nonlinearity, ~b! non-
Markovicity, and ~c! lack of detailed balance. Apart from
some analog@31# and digital @32# simulation studies, there
has been very little analytical work dealing with the proble
of a damped stochastic system driven by colored noise.

-
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Fronzoniet al. @33# used projector-operator technique
obtain an approximate, nonlinear Fokker-Planck-type eq
tion for a colored noise driven damped bistable syste
Fronzoniet al. computed the SPDFP(x), and compared the
theoretical results with their digital and analog simulati
results. Recently, the authors of Ref.@34# considered a
Langevin equation driven by colored noise with an inert
term, and derived the extremal action analytically using
path integral method. The present paper proposes an app
mate theoretical solution to the colored noise driven stoch
tic system with finite damping. We derive an approxima
FPE for the above process using the path integral techni
We also calculate the SPDF of the colored noise driv
damped stochastic system.

The paper is organized as follows: In Sec. II, we derive
approximate FPE using the path integral method. We a
derive effective diffusion coefficients associated with t
FPE using the steepest descent technique. In Sec. III, we
the MCF method and derive a formula for calculating t
SPDF. In order to validate our theoretical results, in Sec.
we do a case study of a damped bistable potential driven
colored noise. In our case study, we first numerically co
pute the minimal action path~MAP!, and then compute the
effective diffusion coefficients present in our approxima
FPE. Next the SPDF of thex process is calculated and com
pared with that of corresponding digital simulation resu
Section V contains our conclusions.

II. APPROXIMATE FOKKER-PLANCK EQUATION:
PATH INTEGRAL METHOD

In this section we derive an approximate FPE govern
Eq. ~1! using the path integral technique. We start with t
exact master equation for Eq.~1! obtained by using the func
tional derivative technique@22,35,36#. The master equation
is @see Eq.~3.1! of Ref. @33##

]P~x,n,t !

]t
5

]

]t
^d~x~ t !2x!d~n~ t !2n!& ~2!

52n
]

]x
P~x,n,t !1U8~x!

]

]n
P~x,n,t !1g

]

]n
@nP~x,n,t !#

1
]2

]n]x FD

t E
0

t

dsexpF2
~ t2s!

t G K d„x~ t !2x…d„n~ t !

2n…
dx~ t !

dj~s!L G1
]2

]n2 FD

t E
0

t

dsexpF2
~ t2s!

t G K d„x~ t !

2x…d„n~ t !2n…
dn~ t !

dj~s!L G . ~3!

The ensemble average represented by the angular bra
^ & in Eq. ~3! can be replaced by the equivalent path integ
notation@22#
a-
.
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]P~x,n,t !

]t
52n

]

]x
P~x,n,t !1U8~x!

]

]n
P~x,n,t !

1g
]

]n
@nP~x,n,t !#1

]2

]n]x FD

t E
0

t

ds

3expF2
~ t2s!

t G E
2

2E D@j~ t !#P@j~ t !#d„x~ t !

2x…d„n~ t !2n…
dx~ t !

dj~s!G1
]2

]n2 FD

t E
0

t

ds

3expF2
~ t2s!

t G E
2

2E D@j~ t !#P@j~ t !#

3d„x~ t !2x…d„n~ t !2n…
dn~ t !

dj~s!G . ~4!

In Eq. ~4!, *2
2* represents the path integral ov

j(t),D@j(t)# is the measure for path integration, an
P@j(t)# is the probability of occurrence ofj(t) realization.

Our next step is to evaluate the response functi
dx(t)/dj(s) anddn(t)/dj(s) in Eq. ~4!. We use the results
presented by Ramirez-Piscina and Sancho in Ref.@37# for
our purpose. These authors considered a multivariable
tem driven by an OU noise given by stochastic different
equations

q̇a~ t !5na„q~ t !…1gas„q~ t !…js~ t !, ~5!

where

^jm~ t !&50, ~6a!

and

^jm~ t !jn~s!&5
Dm

tm
dmn exp~2ut2su/tm!. ~6b!

For Eqs.~5! and~6!, the response function matrixRI (t,s)
with elementsRab(t,s)5@dqa(t)/djb(s)# was derived in
Ref. @37# to be

RI ~ t,s!5TFexpF E
s

t

ds~WI 1HI !G GgI ~s!, ~7!

whereT is the time-ordering operator andgI is a matrix with
elementsgmn(q). WI andHI are matrices with elementsg:

Wabmn5
]na

]qm
dbn , ~8!

Habmn5
]gas

]qm
dbnjs . ~9!

In order to use the above results of Ref.@37#, we first
convert Eq.~1! to two-dimensional equations:

ẋ5n, ~10a!

ṅ52U8~x!2gn1j~ t !. ~10b!
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For our system, it can be shown that the response func
matrix is

RI 5F 0
dx~ t !

dj~s!

0
dn~ t !

dj~s!

G . ~11a!

Similarly, gI , WI , andHI are given by

gI 5F0 0

0 1G , ~11b!

WI 5F 0 1

2U9~x! 2gG , ~11c!

HI 5F0 0

0 0G . ~11d!

Keeping terms only up to first order in (t2s) in Eq. ~7!, it
can be shown that

RI ~ t,s!5F0 ~ t2s!

0 12g~ t2s!
G , ~12!

'F 0 expE
s

t

ds21

0 expE
s

t

2g ds
G . ~13!

Now, comparing Eqs.~11a! and ~13!, we have

dx~ t !

dj~s!
5expE

s

t

ds21 ~14a!

and

dn~ t !

dj~s!
5expE

s

t

2g ds. ~14b!

Substituting Eqs.~14! into Eq. ~4!, we obtain

]P~x,n,t !

]t
52n

]

]x
P~x,n,t !1U8~x!

]

]n
P~x,n,t !

1g
]

]n
@nP~x,n,t !#

1
]2

]n]x E2

2E D@j~ t !#P@j~ t !#d„x~ t !

2x…d„n~ t !2n…E
0

t

ds
D

t
expF E

s

t

2t21drG
3FexpE

s

t

dr 21G
1

]2

]n2 E
2

2E D@j~ t !#P@j~ t !#d„x~ t !2x…d„n~ t !
n
2n…E

0

t

ds
D

t
expF2E

s

t

~t211g!drG . ~15!

In order to do the path integration in Eq.~15!, we use the fact
that *2

2*D@j(t)#P@j(t)#5*2
2*D@x(t)#P@x(t)#. The path

probability P@j(t)# for the OU process under consideratio
over the time interval~0,t! is given by@27#

P@j~ t !#}expF21

4D E
0

t

du@j~u!1tj̇~u!#2G . ~16!

Whenx(t) andj(t) are related through Eq.~1!, we have

P@x~ t !#}J@x~ t !#expS 2
S@x~ t !#

D D , ~17!

when actionS@x(t)# is given by

S@x~ t !#5 1
4 E

0

t

dt@$ẍ1g ẋ1U8~x!%21t2$ x̂1g ẍ

1U9~x!ẋ%2#. ~18!

J@x(t)# is the Jacobian of transformation from thej(t) real-
ization to thex(t) realization over the same time interv
~0,t!.

In the limit D→0, P@x(t)# given in Eq. ~17! reaches a
maximum when actionS@x(t)# is minimum. Thus, in the
limit D→0, the major contribution to the path integral aris
around the MAP which minimizes the actionS@x(t)# in
reachingx(t)5x from x(0). Thecondition for minimizing
the action is

dS@x~ t !#

dx~ t !
50. ~19!

For S@x(t)# given by Eq.~18!, the condition given in Eq.
~19! yields the fourth order nonlinear ordinary differenti
equation iny @34#:

U822y2g212U9y21y2~y8212yy9!

5t2$2y2~g2y8212g2yy912gyU-2U92!

12y2~2yy9U91y82U912yy8U-1y2U-8!

1y2~9y2y921y84116yy82y9112y2y8y-12y3y-8!%.

~20!

The MAP is the solution of Eq.~20! with suitable boundary
conditions. In Eq.~20!, y representsẋ and dashes represen
derivatives with respect tox.

Let us now consider the two terms

E
0

t

ds
D

t
expF E

s

t

2t21drGFexpE
s

t

dr21G
and

E
0

t

ds
D

t
expF2E

s

t

~t211g!drG
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in Eq. ~15!, and invoke the steepest-descent approxima
@26#, which is valid in the limit D→0. According to this
approximation, we evaluate the above terms along the M
and take these terms out of the path integral. On perform
the remaining path integral in Eq.~15!, they simply yield
P(x,v,t). Therefore, we propose the effective diffusion c
efficients in the smallD limit as

E
0

t

ds
D

t
expF E

s

t

2t21drGFexpE
s

t

dr21G ~21a!

and

E
0

t

ds
D

t
expF2E

s

t

~t211g!drG , ~21b!

where the above two terms are evaluated along the MAP.
now go ahead and simplify expression~21! as follows.

Let z(s) and w(r ) represent the values ofx along the
MAP at timess and r respectively. Lety(z) and y(w) rep-
resent the velocity variabley along the MAP, defined by Eq
~20! at the spatial pointsz and w, respectively. Using the
relations y(z)5dz(s)/ds and y(w)5dw(r )/dr in expres-
sions~21!, we change the time variabless and r into space
variablesz and w, respectively. Now the diffusion coeffi
cients given by expressions~21a! and~21b! can be written as

D1~x!5E
x~0!

x~ t ! dz

y~z!

D

t
expF E

z

x

2t21
dw

y~w!GFexpE
z

x dw

y~w!
21G
~22a!

and

D2~x!5E
x~0!

x~ t ! dz

y~z!

D

t
expF2E

z

x

~t211g!
dw

y~w!G ,
~22b!

respectively.
Substituting these termsD1(x) andD2(x) given by Eqs.

~22a! and ~22b! into Eq. ~15!, we obtain

]P~x,n,t !

]t
52n

]

]x
P~x,n,t !1U8~x!

]

]n
P~x,n,t !

1g
]

]n
nP~x,n,t !1

]2

]n]x
D1~x!P~x,n,t !

1
]2

]n2 D2~x!P~x,n,t !. ~23!

This is our effective Fokker-Planck equation~EFPE! with
effective diffusion coefficientsD1(x) and D2(x) given by
Eqs. ~22a! and ~22b!, where y(z) and y(w) represent the
velocity variabley along the MAP, defined by Eq.~20! at the
pointsz andw, respectively.

III. STATIONARY PROBABILITY DENSITY FUNCTION

In this section we calculate the SPDF for damped stoch
tic system driven by OU noise@Eq. ~10!#. We start with our
approximate Fokker-Planck-type equation given by Eq.~23!,
and rewrite it as follows:
n

P
g

e

s-

]P~x,n,t !

]t
52n

]

]x
P~x,n,t !1

]

]n Fgn1
]

]x
$U~x!

1D1~x!%GP~x,n,t !1D2~x!
]2

]n2 P~x,n,t !.

~24!

Now let us consider a damped stochastic system driven
white Gaussian noise. Such a system is described by
two-dimensional equations

ẋ5n, ~25a!

ṅ52U8~x!2gn1j~ t !, ~25b!

where

^j~ t !&50 ~26a!

and

^j~ t !j~s!&52Dd~ t2s!. ~26b!

The FPE describing the system given by Eq.~25! reads
@2#

]P~x,n,t !

]t
52n

]

]x
P~x,n,t !1

]

]n Fgn1
]

]x
U~x!GP~x,n,t !

1gn th
2 ]2

]n2 P~x,n,t !, ~27!

where n th5AD/g5AkT is the thermal velocity. We com
pare the expressions given by Eqs.~24! and ~27!, and find
that they are analogous. The term$U(x)1D1(x)% in Eq.
~24! is analogous to the termU(x) in Eq. ~27!. The term
D2(x) in Eq. ~24! is analogous to the termgn th

2 in Eq. ~27!.
Risken@2# applied the MCF method to the FPE@Eq. ~27!#

to derive the SPDF analytically as follows. The SPDF
position is related to the first expansion coefficient of t
Brinkman’s hierarchy through

P~x!5exp@2«U~x!/n th
2 #C0~x!. ~28!

Brinkman’s hierarchy for the coefficientsCn(x,t) ~Cn50 for
n,0! is given by the set of equations

]Cn

]t
52AnD̂Cn212ngCn2An11DCn11 , ~29!

where

D5n th

]

]x
2«

dU~x!

dx Y n th ~30!

and

D̂5n th

]

]x
1~12«!

dU~x!

dx Y n th . ~31!
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In the stationary state, a general solution of Eq.~29! is easily
obtained for the case where the probability current inx di-
rection integrated over the velocities vanishes, i.e.,C150.
This solution is given by

D̂C050, ~32!

i.e.,

C0~x!;exp@2~12«!U~x!/n th
2 #, ~33!

and Cn50 for n>1. Substituting Eq.~33! into Eq. ~28!,
Risken obtained

P~x!5N exp@2U~x!/n th
2 #. ~34!

Using the analogy between our EFPE and Eq.~27!, and fol-
lowing exactly the above-mentioned steps of Risken, we
derive the SPDF for our EFPE. For our EFPE,P(x), D, and
D̂ become

P~x!5expF2«$U~x!1D1~x!%Y D2~x!

g GC0~x!,

~35!

D5S D2~x!

g D 1/2 ]

]x
2«

d$U~x!1D1~x!%

dx Y S D2~x!

g D 1/2

,

~36!

D̂5S D2~x!

g D 1/2 ]

]x
1~12«!

3
d$U~x!1D1~x!%

dx Y S D2~x!

g D 1/2

, ~37!

which are obtained by substituting the corresponding an
gous terms in Eqs.~28!, ~30!, and ~31!. For our EFPE, Eq.
~32! becomes

F S D2~x!

g D 1/2 ]

]x
1~12«!

3
d$U~x!1D1~x!%

dx Y S D2~x!

g D 1/2GC050.

~38!

Solving for C0 , we have

ln C052g~12«!E
d

dx
$U~x!1D1~x!%

D2~x!
dx. ~39!

Evaluation of the integral in Eq.~39! is computationally for-
bidding. However, it is observed that ifD2(x) happens to be
a slowly varying function ofx, we can takeD2(x) out of the
integral and evaluate the rest of the integral. That effectiv
means that under the condition]D2(x)/]x'0, we obtain,
from Eq. ~39!,

C0~x!;expF2~12«!$U~x!1D1~x!%Y D2~x!

g G .
~40!
n

o-

ly

With this approximation our stationary probability densi
function can be obtained by substituting Eq.~40! into Eq.
~35! as

P~x!5N expF2$U~x!1D1~x!%Y D2~x!

g G , ~41!

where

N5H E
2`

`

expF2$U~x!1D1~x!%Y D2~x!

g GdxJ 21

~42!

is the normalization constant.
With regard to our approximation@]D2(x)/]x'0#, we

found in our numerical computation ofD1(x) and D2(x)
over the region22<x<2 ~please see Sec. IV! that D2(x)
indeed varies slowly withx as compared toD1(x), thus sup-
porting our above approximation. Therefore, we propose
~41! as the approximate SPDF for the solution process
one-dimensional damped stochastic system driven by
noise under the condition that@]D2(x)/]x'0#.

IV. CASE STUDY: BISTABLE POTENTIAL

In order to validate our above theory, we take up the c
study of damped bistable system driven by OU noise. T
bistable potential shown in Fig. 1 is given by

U~x!52
x2

2
1

x4

4
. ~43!

x521 andx511 are the two minima of the bistable po
tential.
For the case of bistable potential, our approximate FPE
comes Eq.~23!, with

U8~x!52x1x3. ~44!

A. Numerical computation of MAP

In order to compute the effective diffusion coefficien
D1(x) andD2(x) given by Eqs.~22!, we have to first evalu-

FIG. 1. The bistable potential.
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FIG. 2. ~a! The SPDF of our theoretical results computed using Eq.~41! ~solid lines! is compared with our digital simulation result
~dashed lines! for D50.2, g53.5, andt50.2. ~b! The SPDF of our theoretical results computed using Eq.~41! ~solid lines! is compared
with our digital simulation results~dashed lines! for D50.3,g53.5, andt50.2.~c! The SPDF of our theoretical results computed using E
~41! ~solid lines! is compared with our digital simulation results~dashed lines! for D50.45,g53.5, andt50.2.
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ate the velocityy(x) along the MAP. In order to obtain th
MAP, we need to solve the fourth order, nonlinear, ordina
differential equation given by Eq.~20! numerically with suit-
able boundary conditions. The MAP is that path which mi
mizes the actionS@x(t)# involved in reaching the poin
x(t)5x from x(0). It is valid to assume the Brownian pa
ticle to be at rest at the stable point~to whose basin of at-
traction x belongs! for a long time, before an optimal fluc
tuation takes it tox@38#. Since x(0) is a stable point, the
MAP becomes time-translational invariant. Therefore we
y

-

t

t→`. For the case of bistable potential we then havex(t
→`)5x, x(t50)511 for 0<x,`, andx(t50)521 for
2`,x,0.

Numerical solution of Eq.~20! requires specifying four
boundary conditions. Two of these boundary conditions
y(x521)50 and y(x50)50, and they follow from the
condition that the Brownian particle starts and finishes
rest. The remaining two boundary conditions are specified
the values of the derivatives at the end points, i.e.,y8(x5
21) andy8(x50) @34#. We obtain these boundary cond
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FIG. 2. ~Continued!.
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tions by linearizing the sixth order nonlinear ordinary diffe
ential equation inx(t), given by Eq.~19!. The linearization
is done around the minimum and the maximum points of
bistable potential. This lengthy procedure of evaluating
boundary conditions is deferred to the Appendix A. At t
end of the procedure described in the Appendix A, we obt
the boundary conditionsy(x521)50, y(x50)50, y8(x
521)5l1 , andy8(x50)5l2 , wherel1 is that eigenvalue
which is real, positive and has the smallest magnitude,
l2 is that eigenvalue which is real, negative and has
smallest magnitude.

The fourth order nonlinear ordinary differential equati
given by Eq.~20! with four boundary conditions specified a
the starting and the ending points is known as a two po
boundary value problem. We solve the two point bound
value problem given by Eq.~20! using the relaxation metho
@39#. Good initial guesses are the secret of efficient rel
ation methods. No initial guess for the MAP of an unde
damped colored noise driven bistable system is available~to
our knowledge!. Therefore we make use of the MAP for a
overdamped colored noise driven bistable system in
small t limit given by Eq. ~15! in Ref. @30# for our initial
guess. Keeping terms up to the order oft2 in Eq. ~15! of Ref.
@30#, we have,y5U812t2U82U-. We use thisy as the
initial guess in our numerical procedure for the calculation
the MAP @Eq. ~20!#.

For finding the MAP in the region ofx from x521 to
22, we treat the fourth order, nonlinear, ordinary different
equation given by Eq.~20! as an initial value problem. We
solve Eq.~20! by applying fourth order Runge-Kutta metho
@39#. We cannot initialize our numerical computation proc
dure atx521, since the values ofy and all its higher de-
rivatives are zero at this point. This makes the initial value
the function given by Eq.~20! mathematically indeterminat
at x521. So we take the starting point atx521.01, which
is very close to the minimumx521. For the initial value of
e
e

in

d
e

t
y

-
-

e

f

l

-

f

y at x521.01, we takey(x521.01)52y(x520.99).
This is due to the symmetry of the solution near the mi
mum of the bistable potential, as the bistable potentia
almost parabolic at the minimum point. The magnitudes
y8, y9, andy- at x521.01 are also assumed to be the sa
as their corresponding magnitudes atx520.99. The sign of
y at x521.01 is taken to be negative asy<0 for 2`,x
<21. The signs ofy8, y9, and y- at x521.01 are held
positive, which is the simplest assumption made to keep
sign of y negative throughout the region22<x<21. As
such the MAP calculation is mathematically nonuniform
the pointsx521 and11. As a result the peaks of the prob
ability distribution in our figures show notches and bump
We thus solve Eq.~20! numerically, and find the MAP in the
region22<x<0, enabling us to calculate the diffusion co
efficientsD1(x) andD2(x) over this whole region.

B. SPDF

The diffusion coefficientsD1(x) andD2(x) calculated in
Sec. IV A are used to compute the SPDF given by Eq.~41!.
We compute the SPDFP(x) for x,0 for various values of
D, g, and t using Eq.~41!. SPDF’s in the rangex.0 are
obtained immediately from the symmetryP(2x)5P(x),
thus obtainingP(x) for 22<x<2. For comparing our the-
oretical results, we also perform a digital simulation for t
same sets ofD, g, and t using the second order algorithm
developed by Fox@40#, and adapted by us~For details,
please see Ref.@32#! for an OU noise driven damped bistab
system. In order to obtain the normalized SPDF given by
~41!, we have to calculate the normalization constantN given
by Eq. ~42!. SinceD1(x) and D2(x) have been computed
through our numerical procedure only over the limited ran
22<x<2, we are unable to computeN. In order to account
for the unknown normalization constant, the peak of the
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FIG. 3. ~a! The SPDF of our
theoretical results computed usin
Eq. ~41! ~solid lines! is compared
with our digital simulation results
~dashed lines! for D50.3, g
55.0, andt50.2. ~b! The SPDF
of our theoretical results com
puted using Eq.~41! ~solid lines!
is compared with our digital simu-
lation results~dashed lines! for D
50.3, g55.5, andt50.2.
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normalized theoretical SPDF is made to coincide with
peak of the normalized SPDF obtained through digital sim
lation.

In Figs. 2–4, the value of the SPDFP(x), calculated
using our approximate FPE as well as through digital sim
lation, is plotted againstx for various values ofD, g, andt.
In Figs. 2~a!–2~c!, the value of our SPDFP(x) is plotted
againstx for various values ofD with fixed g andt. In Figs.
3~a! and 3~b!, we plotP(x) againstx for various values ofg
by fixing D and t. In Figs. 4~a! and 4~b!, we plot P(x)
againstx for different values oft, keepingD andg fixed.

Figures 2–4 show that our SPDF curves coincide fav
ably well with the digital simulation results~but for the nor-
e
-

-

r-

malizing constant!. It is seen from Figs. 2~a!–2~c! that the
SPDF curve becomes less peaked with increasingD at fixed
g and t. This behavior of the SPDF curve is in qualitativ
agreement with the conclusions drawn from digital simu
tion. In Figs. 2~b!, 3~a!, and 3~b!, it is observed that with
increasingg at fixedD andt, the SPDF curve becomes mo
peaked, establishing complete agreement with the infere
drawn from the digital simulation results. In Figs. 2~a!, 4~a!,
and 4~b!, we note that the peak of the SPDF curve increa
with increasingt at fixedD andg, showing exactly the same
behavior as in the case of digital simulation results. It is th
seen that the SPDF obtained through our approximate FP
in good agreement with the corresponding digital simulat
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FIG. 4. ~a! The SPDF of our
theoretical results computed usin
Eq. ~41! ~solid lines! is compared
with our digital simulation results
~dashed lines! for D50.2, g
53.5, andt50.4. ~b! The SPDF
of our theoretical results com
puted using Eq.~41! ~solid lines!
is compared with our digital simu-
lation results~dashed lines! for D
50.2, g53.5, andt50.5.
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result.
With regard to the effectiveness of our theoretical pred

tion with a change in the parameters, we can draw the
lowing conclusions. From Figs. 2~a!–2~c!, it can be seen tha
as D→0 our theory follows our digital simulation mor
closely. This can be inferred from the fact that the theoret
SPDF coincides better with the digitally simulated SPDF
x50 for smallerD, keeping in mind that the two SPDFs a
made to coincide at the peaks for the sake of normalizat
From Figs. 2~b!, 3~a!, and 3~b!, we note that our theoretica
predictions are not affected appreciably with a change ing.
From Figs. 2~a!, 4~a!, and 4~b!, and from a comparison o
SPDF obtained through digital simulation with our theo
-
l-

l
t

n.

done for largert ~which are not reported here!, we note that
our theoretical predictions are better only whent is small.

V. CONCLUSIONS

This paper has concentrated on developing an analy
solution to the problem of damped stochastic system dri
by colored noise. We briefly summarize the procedu
adopted by us. We derive our EFPE starting with an ex
master equation for the probability density in position a
velocity space obtained by using the functional derivat
technique. In the limitD→0, the major contribution to the
path integrals occurring in the EFPE arises around the M
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which minimizes the action of the Brownian particle
reaching the maximum of the potential. Using the MAP, t
effective diffusion coefficientsD1(x) and D2(x) associated
with the EFPE are derived. We find that our EFPE is ana
gous to the FPE describing a damped stochastic sys
driven by Gaussian white noise. This analogy is used al
with the MCF method@2# in obtaining the formula for the
SPDF.

Our proposed theory is validated by taking up the c
study of damped bistable system driven by OU noise. T
MAP is computed by solving a fourth order, nonlinear, or
nary differential equation using a numerical method imp
ing suitable boundary conditions. The boundary conditio
are obtained by linearizing a sixth order, nonlinear, ordin
differential equation. Effective diffusion coefficientsD1(x)
and D2(x) are calculated in the range22<x<2 using the
MAP. The SPDF is then computed using our theoretical f
mula for various values ofD, g, andt.

For the purpose of comparing our theoretical results,
perform a digital simulation of the damped bistable syst
driven by OU noise using Fox’s second order algorithm. I
observed that our theoretical results for the SPDF agree
vorably with our corresponding digital simulation results.

Although our formula for the effective diffusion coeffi
cients associated with the EFPE is valid for general value
parametersD, g, andt, we could validate the formula only
over a limited range of parameters for the following reaso
~a! In our numerical computation of the MAP, we have
choose only such values ofg for which the rate constantl
becomes real and nonoscillatory@refer to Eq.~A12!#. This
limits the range ofg for which our numerical procedure ca
be applied.~b! Further, our numerical method for the calc
lation of the MAP shows a diverging behavior for very sm
as well as very large values oft. ~c! Moreover, our theory of
the EFPE is valid only in the limitD→0. Because of these
three restrictions, we could vary our parametersD, g, andt
effectively only within a limited range. Therefore, we cou
not compare our theory with digital simulations over a wid
range of parameters. However within its limited range o
theory compares favorably with our digital simulation r
sults.
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APPENDIX

In this Appendix we obtain the boundary conditio
y8(x521) and y8(x50) necessary for solving the MAP
given by Eq. ~20!. The derivativesy8(x521) and y8(x
50) are evaluated from the sixth order, nonlinear ordin
differential equation inx(t) given by the extremal condition
dS@x(t)#/dx(t)50 @Eq. ~19!# for the actionS@x(t)# given
by Eq. ~18!. Equations~18! and ~19! yield the following
sixth order, nonlinear ordinary differential equation inx(t):
-
m
g

e
e

-
s
y

-

e

s
a-

of

:

l

r
r

l

n-

y

xv i5
2

t2 U9ẍ1
1

t2 U8U92
g2

t2 ẍ22U9xiv2U9U-ẋ22U92ẍ

1
1

t2 xiv1
1

t2 U-ẋ21g2xiv1gU-8ẋ313gU-ẋẍ

2U-9ẋ426U-8ẋ2ẍ23U-ẍ224U-ẋ x̂ ~A1!

where ẋ, ẍ, x̂, xiv, xv, and xv i denote first, second, third
fourth, fifth, and sixth order derivatives ofx with respect to
time.

By letting

x15x, x25 ẋ, x35 ẍ, x45 x̂, x55xiv, x65xv,
~A2!

Eq. ~A1! can be reduced to a set of six first-order different
equations given below:

ẋ15x25 f 1~x1 ,x2 ,x3 ,x4 ,x5 ,x6!,

ẋ25x35 f 2~x1 ,x2 ,x3 ,x4 ,x5 ,x6!,

ẋ35x45 f 3~x1 ,x2 ,x3 ,x4 ,x5 ,x6!,

ẋ45x55 f 4~x1 ,x2 ,x3 ,x4 ,x5 ,x6!,

ẋ55x65 f 5~x1 ,x2 ,x3 ,x4 ,x5 ,x6!,

ẋ65
2

t2 U9ẍ1
1

t2 U8U92
g2

t2 ẍ22U9xiv2U9U-ẋ22U92ẍ

1
1

t2 xiv1
1

t2 U-ẋ21g2xiv1gU-8ẋ313gU-ẋẍ

2U-9ẋ426U-8ẋ2ẍ23U-ẍ224U-ẋ x̂

5 f 6~x1 ,x2 ,x3 ,x4 ,x5 ,x6!, ~A3!

The above equations can be written as the state equa

Ẋ5f~X!, ~A4!

where

X5@x1 x2 x3 x4 x5 x6#T ~A5!

and

f ~X!5@ f 1~X! f 2~X! f 3~X! f 4~X! f 5~X! f 6~X!#T.
~A6!

Equation~A4! can be linearized for small variations abo
an equilibrium pointX0 . The derivatives of all the state var
ables are zero at the equilibrium pointX0 . Expanding Eq.
~A4! into a Taylor series, and neglecting terms of second
higher orders, for thei th state equation we obtain

xi5 f i~X0!1(
j 51

n
] f i~X!

]xj
U

x5x0

~xj2xj 0!. ~A7!

Recognizing that at the equilibrium point,f i(X0)50, and
defining the variation about the equilibrium point asx̃ j5xj
2xj 0 , we obtainx8 j5 ẋ j .
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The linearized state equation can be written as

x8 i5(
j 51

n
] f i~X!

]xj
U

x5x0

x̃ j . ~A8!

The above linearized component equation given in
~A8! can be written as the vector matrix equation

XP 5AX̃, ~A9!

where

A53
] f 1

]x1

] f 1

]x2
¯

] f 1

]xn

] f 2

]x1

] f 2

]x2
¯

] f 2

]xn

..............................

] f n

]x1

] f n

]x2
¯

] f n

]xn

4 .

All the partial derivatives in matrixA are evaluated at the
equilibrium stateX0 .

Applying the above linearizing procedure to our nonline
equation given by Eq.~A1!, with the equilibrium point taken
at the minimum of the bistable potentialx521, we obtain
the state equation

XP 5AX̃ , ~A10!

where

A53
0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

] f 6

]x1

] f 6

]x2

] f 6

]x3

] f 6

]x4

] f 6

]x5

] f 6

]x6

4
Matrix A has six distinct eigen valuesl1 ...,l6 . Now, the

solution of Eq.~A10! is given by

X̃~ t !5eAtX̃05MeL tM21X̃0 , ~A11!

whereM is the diagonalizing or modal matrix@41#, andL is
a diagonal matrix given by
nd

on

e,
.

. A
.

r

L53
l1 0 0 0 0 0

0 l2 0 0 0 0

0 0 l3 0 0 0

0 0 0 l4 0 0

0 0 0 0 l5 0

0 0 0 0 0 l6

4
X̃0 is the initial state atx521. From Eq.~A11!, we can
finally obtain a general solution forx of the form

x2~21!5(
i 51

6

a i exp~l i t !~ i 51,...,6!,

@34#, with rate constants

l i56
1

t
, 6S ~g224!1gAg228

2
D 1/2

,

6S ~g224!2gAg228

2
D 1/2

~A12!

The condition for the solution to vanish fort→2` and
be nonoscillatory demands that the solution has only th
terms for whichl i is positive and real. Furthermore, term
with l i having the smallest positive real part, sayl1 , will
dominate the solution asymptotically. Thenx2(21)
;exp(l1 t) which implies y[ ẋ→y5l1@x2(21)#. This
gives the boundary conditiony8(x521)5l1 .

Similarly, linearizing Eq.~19! for x near 0 gives rise to a
solution of the form 02x5( i 51

6 a i exp(lit) ( i 51,...,6), with
rate constants

l i56
1

t
, 6S ~g212!1gAg214

2
D 1/2

,

6S ~g212!2gAg214

2
D 1/2

. ~A13!

Following similar reasoning as explained above, for
well-behaved solution we find thaty8(x50)5l2 , wherel2
is that eigenvalue which is real, negative, and has the sm
est magnitude. Thus the boundary conditionsy(x521)
50, y(x50)50, y8(x521), andy8(x50) are obtained as
mentioned above.
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